QUES 05:-

A train moves towards a stationary observer with speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is f_1 If the speed of the train is reduced to 17 m/s, the frequency registered is f_2 If speed of sound is 340 m/s, then the ratio f_1/f_2 is:

[Main 10 Jan. 2019 I]

(a) 18/17

(b) 19/18 (c) 20/19 (d) 21/20

(b) According to Doppler's effect, when source is moving but observer at rest

$$f_{app} = f_0 \left[\frac{V}{V - V_s} \right] \Rightarrow f_1 = f_0 \left[\frac{340}{340 - 34} \right]$$

and,
$$f_2 = f_0 \left[\frac{340}{340 - 17} \right]$$

$$\therefore \frac{f_1}{f_2} = \frac{340 - 17}{340 - 34} = \frac{323}{306} \text{ or, } \frac{f_1}{f_2} = \frac{19}{18}$$